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Diffusion on lattice animals and percolation clusters: 
a renormalisation group approach 
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t Department of Physics, Clark University, Worcester, MA 01610, USA and Center for 
Polymer Studies$, Boston University, Boston, MA 02215, USA 
$ Department of Physics, Clark University, Worcester, MA 01610, USA 

Received 1 December 1983 

Abstract. A position space renormalisation group method is developed to study the scaling 
properties of random walks on fractals. Calculations in two dimensions for site lattice 
animals and site percolation clusters yield numerical results for the critical exponent defined 
by the asymptotic behaviour of the root-mean-square displacement of the walker. The 
renormalisation group results are consistent with recent Monte Carlo calculations. 

The problem of random walks on random networks was proposed by de Gennes (1976) 
in the context of an ‘ant in the labyrinth’. Much of our present understanding of this 
problem has been the result of computer simulations and scaling arguments. The goal 
of this paper is to develop a position space renormalisation group method applicable 
to random walks on self-similar geometrical structures. Examples of such ‘fractals’ 
are percolation clusters at threshold and random lattice animals. 

Fractals are characterised in part by the fractal dimension df defined by 
(Mandelbrot 1982) 

s - (R,)‘f (s large), (1) 
where s is the number of particles, and R ,  is a linear dimension of the cluster. The 
root-mean-square displacement RN of the random walker from the origin defines a 
second length scale (Mitescu and Roussenq 1983). The ‘fractal dimension of the walk’ 
d, on the fractal aggregate is defined by the asymptotic behaviour 

N - (RN)dw ( N  large), (2) 
where N is the number of steps in the walk. For the special case df = d, we have d, = 2 
independent of the spatial dimension d of the lattice and the relative values of RN 
and R,. Our interest is in the ‘self-similar’ limit (Gefen et a1 1983) for which 
1 << RN << R,. Although in this limit d ,  depends on d, Alexander and Orbach (1983) 
have conjectured that the ratio 2df/d,=:, independent of d, for random walks on 
percolation clusters. Arguments have been made (Leyvraz and Stanley 1983, Meakin 
and Stanley 1983, Rammal and Toulouse 1982) to support the more general conjecture 
that 2df/d, = $ for all homogeneous fractals of which percolation clusters and lattice 
animals are examples. 

$ Supported in part by grants from NSF, ARO, and ONR. 
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A position space renormalisation group (PSRG) treatment of random walks on 
lattice animals and percolation clusters requires the determination of the recursion 
relations for both the random walk and the cluster. In order to determine the latter 
for both clusters in a unified formalism, we adopt the two-parameter approach of 
Family and Coniglio (1980) in which a weight K is identified with an occupied site, 
and an independent parameter q is associated with an empty site. Since the cluster 
configurations to be included in the recursion relations for K and q depend on the 
random walk renormalisation transformation, we first discuss the latter. 

To determine the recursion relation for the random walk, we interpret the random 
walk as a kinetic process (Nakanishi and Family 1983), and introduce a weight w to 
describe the walk and its behaviour under rescaling. The weight associated with a 
particular step at site U is w/z,, where z, is the coordination number at site U.  Since 
there are z, possible directions, the total weight of all possible steps from a particular 
site is w. This kinetic interpretation of the random walk problem differs from the 
more common ‘static’ interpretation (see for example Family and Gould 1984) for 
which all walks with an equal number of steps are given equal weight. (There is no 
difference in the two interpretations on the perfect lattice since the coordination 
numbers for every site are identical.) 

The requirement, that a step of the random walk be allowed only between occupied 
sites of the original lattice and between renormalised sites on the rescaled lattice, 
implies that a minimum of two cells is necessary for a consistent determination of the 
random walk renormalisation transformation. In addition, since the weight associated 
with a particular step depends on the coordination number of the initial site, the 
occupancy of all the nearest-neighbour sites of the initial site is relevant. Therefore 
for the square lattice we adopt a five-cell geometry (see figure 1) and consider all 
walks originating from the central cell. In order that walks be allowed to each of the 
four nearest-neighbour cells (labelled N, S, E and W in figure l ) ,  we assume the 
existence of a connected path between the central cell (cell C) and each adjacent cell, 
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Figure 1. The five-cell geometry necessary on the square lattice for a consistent determina- 
tion of the random walk renormalisation transformation. We assume the existence of a 
connected path between the central cell C and each of its neighbours N, S, E and W. In 
addition, a connected spanning path exists in each of the five cells. The starting point for 
each walk is the lower-left comer of cell C; a walk spans if it r.eaches the bottom row of 
cell N. The example shown (for cells of linear dimension b = 3) corresponds to one term 
in the generating function R,(K, q, w )  containing all spanning walks on all spanning clusters. 
(a) A spanning walk of weight (w6/512)KMq’’. There are 30 occupied sites (full circles) 
with weight K and 15 empty sites (open circles) with probability q ;  the weight of a step 
is WIZ,, where z, is the coordination number at site a. ( b )  The corresponding walk on 
the renormalised lattice. 
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as well as the existence of a spanning path within each of the five cells. These 
assumptions allow us to determine the weight of all walks from the central cell to its 
nearest neighbours. An example of the rules for weighting the walks is given in figure 
1. We consider only one spanning rule for the random walks: the starting point of 
the walk is fixed at the lower-left corner of cell C ,  and a walk spans if the walk traverses 
vertically to cell N. The form of the recursion relation is 

( w ’ / 4 ) K ’ ’ =  R,(K, 4, w )  (3) 

where the generating function R, is the weighted sum of all spanning walks on all 
possible clusters. The renormalised weight w’ is the generating function of a single 
step on the rescaled lattice. The factor of $ in (3) is unambiguous and necessary to 
ensure that the recursion relation reduces to the correct form for the perfect lattice. 
The fractal dimension d, defined in (2) is given by d, = In( b)/ln(A,), where A, = 8 w ’ / 8  w 
is evaluated at the critical fixed point parameters of the cluster K*,4* and at the 
critical fixed point w* of (3) (cf Stanley et a1 1982). 

A consistent evaluation of (3) for d ,  requires the determination of the renormalisa- 
tion transformations for K and 4 with the same five-cell geometry. The complications 
due to the requirement of a connected path between cell C and cells N, S, E and W 
can be minimised by noting that the existence of such a path depends only on the 
‘surface’ sites of cell C and the configurations of the surface row or column adjacent 
to cell C of the nearest-neighbour cells. Our procedure is to generate all connected 
clusters which span a cell of linear dimension b, and classify these clusters according 
to their various possible row or column configurations. The total weight of each 
possible row or column configuration is determined by summing the weights of all 
spanning clusters with the same row or column configuration. We obtain the recursion 
relation for K f 5  by determining the weight of each spanning cluster of cell C and 
multiplying it by the total weight of each adjacent row or column which yields a 
connected path. In order to maintain symmetry between the weights of the row and 
column configurations, we define a cell to be occupied only if a connected path exists 
in both the horizontal and vertical directions. (The results for d ,  are insensitive to 
this spanning rule.) Since we are interested in the statistics of percolation clusters, we 
generate all spanning clusters rather than all spanning configurations. Family and 
Reynolds (1981) discuss the relation of these two approaches and show that they are 
equivalent for percolation clusters at threshold. For the lattice animal problem we 
follow Family (1983) and consider only clusters originating at the lower-left corner 
of the centre cell. No such restriction is made for the percolation clusters. 

The results of the five-cell calculation of df and K* for site lattice animals and 
site percolation clusters on the square lattice are shown in table 1 for b = 2, 3 and 4. 
Note that 4*= 1 for lattice animals and q*=  l - K *  for percolation clusters. If we 
assume (cf Family and Reynolds 1981) that df( b )  behaves as df( b )  = 
df+al ( ln  b)-’fa,(ln b)-’, we find the extrapolated values d f =  1.50 and df = 1.76 for 
lattice animals and percolation clusters respectively (see table 3). These values are 
consistent with the extrapolated one-cell results of df = 1.48 for lattice animals (Family 
1983) and df = 1.85 for percolation clusters (Family and Reynolds 1981) using the 
same spanning rule. 

The enumeration of the spanning cluster configurations and the calculation of K* 
makes it possible to proceed with the determination of d,. The existence of two length 
scales in the present problem requires that the maximum number of steps in a walk 
be limited such that RN << R,. We know that at the critical weight w* corresponding 
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Table 1. Results of the five-cell calculation of the fractal dimension df and the fixed point 
K* of site lattice animals and site percolation clusters on the square lattice. The geometry 
of the five-cell configurations is shown in figure 1 ;  the linear dimension of each cell is b. 

Lattice animals Percolation clusters 

b 4 K *  4 K *  

2 1.6521 0.5035 1.8189 0.8016 
3 1.5958 0.4104 1.8068 0.7593 
4 1.5760 0.3672 1.7995 0.7308 

to the limit N +  CO, only random walks of length RN - " ' 4  are important. Hence we 
adopt the rule that spanning walks whose number of steps is greater than 62 are not 
included in R,. For the same reason we omit walks which return from sites in the 
neighbouring cells to sites in cell C. Note that these rules and our other reasonable 
assumptions for determining R ,  become exact in the large cell limit. 

The explicit enumeration of the spanning random walks on the many possible 
five-cell clusters is done using the counting method described in Family and Gould 
(1984). For a given central cell configuration, we group together all neighbour cell 
configurations which yield the same coordination numbers of the occupied surface sites 
of the central cell. Such a grouping, which we refer to as 'method E', reduces computer 
time and allows us to calculate the coordination numbers exactly within the five-cell 
geometry. The results for df and w* are given in table 2 for 6=2,  3 and 4. If we 
assume that d ,  behaves as d,(6) = d,+ cl(ln 6)-'+c2(ln b)-', we find that d ,  = 2.18 
for lattice animals and d, = 2.76 for percolation clusters (see table 3). (For comparison 
our result for a random walk on a perfect lattice is d,=2.05 rather than the exact 

Table 2. PSRG results of a five-cell calculation of the fractal dimension dw and fixed point 
w* of random walks on the perfect lattice, site lattice animals and site percolation clusters 
on the square lattice. Method E corresponds to the exact calculation of the coordination 
numbers of the occupied surface sites of the central cell and is expected to give more 
reliable results for small cells than Method A in which the coordination numbers are 
obtained by an average over all possible adjacent configurations. 

b 2 3 4 

Perfect W* 

Lattice d W  

Lattice animals 
Method E W* 

d ,  
Method A W* 

dw 

Percolation clusters 
Method E W* 

d ,  
Method A W* 

d w  

1.6211 
1.5165 

1.7018 
1.5232 
1.7228 
1.5316 

1.7517 
1.5470 
1.7593 
1.5470 

1.3443 
1.6570 

1.3203 
1.6603 
1.4309 
1.6912 

1.4251 
1.7039 
1.4981 
1.7197 

1.2311 
1.7229 

1.1347 
1.7382 
1.2633 
1.7680 

1.4129 
1.8409 
1.3163 
1.7895 
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Table 3. The extrapolated values of 4, the fractal dimension of the cluster, and d,, the 
fractal dimension of the random walker on the cluster substrate, obtained for lattice animals 
and percolation clusters from the present five-cell PSRG calculation. The coordination 
numbers were obtained using method E as explained in the text. The calculated values of 
the ratio 24/dw are also shown and found to be consistent with the conjectured value 9 
for homogeneous clusters (Leyvraz and Stanley 1983, Rammal and Toulouse 1983, Alexan- 
der and Orbach 1982). 

Lattice animals Percolation clusters 

1.76 
2.76 
1.28 

value d,=2.) Although the numerical value of d ,  differs considerably for lattice 
animals and percolation clusters, we note that the ratio 2df/d, obtained in our five-cell 
PSRG calculation is close to for both clusters (see table 3); this numerical result is 
consistent with the generalised Alexander-Orbach conjecture (Leyvraz and Stanley 
1983, Meakin and Stanley 1983, Rammal and Toulouse 1982). 

In the limit where the size of the cluster is restricted to be larger than the span of 
the walk, Monte Carlo results for d = 2 give d ,  = 2.6 f 0.3 for lattice animals (Wilke 
et a1 1983) and d ,  = 2.84 f 0.05 for percolation clusters (Havlin and Ben-Avraham 
1983). The small cell PSRG values for d ,  are consistent with these results. However, 
if we determine the coordination number of each surface site of the central cell by 
averaging over all possible configurations of adjacent cells E, S and W, we find that 
the extrapolated value of d ,  is inconsistent with the Monte Carlo result for percolation 
clusters. We refer to this modification as ‘method A’. Since a walk to a site of cell N 
is not possible unless the site is occupied, the average is made for given configurations 
of cells C and N. The most consistent results for w* and d ,  are found by averaging 
z rather than l / z .  From the results shown in table 2, we find the extrapolated values 
d, = 2.16 for lattice animals and d, = 2.10 for percolation clusters. 

Sahimi and Jerauld (1983) have developed a one-cell PSRG approach and found 
d,=2.81 for d = 2  percolation clusters. They adopt a static interpretation of the 
random walk, an interpretation which is inconsistent with the Monte Carlo experiments. 
Moreover, their one-cell calculation is not consistent with the requirement that a step 
be allowed only between occupied sites. Keyes (1983) has developed a two-cell PSRG 
method which in detail is different from ours and obtains d ,  = 2.47 on the triangular 
lattice. 

If we use the extrapolated values of d ,  shown in table 3 and finite size scaling 
considerations, we obtain w* = 1.00 for lattice animals and w* = 1.32 for percolation 
clusters. Since the same considerations yield w* = 1.11 for the perfect lattice rather 
than the exact result w* = 1.00, we conjecture that w* for lattice animals is less than 
unity. These relative values of w* are indicative of the fact that w* as well as d, are 
not monotonic functions of the fractal dimension df of the cluster. The physical 
significance of w* can be understood by noting that w’ can be interpreted as being 
proportional to the probability of a step to an occupied nearest-neighbour site on the 
renormalised lattice; its inverse is proportional to the mean time for waiting at a site 
before a step. Since w* represents an unstable fixed point, we see that the flow from 
the value w = 1 on the original lattice is toward the stable fixed point w* = 0 for 
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percolation clusters. For lattice animals the flow appears to be towards the stable fixed 
point w* =W. Hence the renormalised waiting time on long length scales is found to 
be short for lattice animals and long for percolation clusters. An intuitive explanation 
of this conjectured qualitatively different behaviour would be of interest. 

It is a pleasure to thank W Klein and C Unger for important suggestions and constant 
encouragement throughout this work. We thank F Family, J Machta, H Nakanishi 
and H E Stanley for useful discussions and helpful comments. We also acknowledge 
the contributions of J W Lyklema and K Kaski in the early stages of this work. 
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